本文发表于果壳网 – guokr.com, 转载请注明出处. 商业使用请联系果壳网.
最速降线问题
“想象一个小球,仅受重力,从点 A 出发沿着一条没有摩擦的斜坡滚至点 B。怎样设计这条斜坡,才能让小球在最短的时间内到达点 B?”
这个在数学史上被称为“最速降线”的知名问题,最早是由著名的意大利科学家伽利略(Galileo Galilei)于 1630 年提出来的。他在研究后认为最速降线应该是圆弧,但可惜的是这个答案并不是正确的。时间又过了 60 多年,1696 年 6 月,来自瑞士巴塞尔(Basel,这座城市不仅是数学世家伯努利的故乡,也是欧拉的故乡,有一个由欧拉解决的著名数论问题就是以这座城市命名的)的约翰・伯努利(Johann Bernoulli)在《教师学报》(Acta Eruditorum)上又重新提出这个问题,并向全欧洲的数学家提出公开挑战。这个别出心裁却又十分容易理解的问题吸引了当时全欧洲的数学家,而最后给出了正确解答的人也都是数学史上赫赫有名的巨人。这也让这次挑战成为了数学史上最激动人心的一场公开挑战。
数学家之间公开挑战的传统要追溯到 16 世纪在意大利的博洛尼亚(Bologna)。16 世纪初的博洛尼亚曾是欧洲数学思想的大熔炉,全欧洲的学生都会来到博洛尼亚大学。他们甚至还“发明”了一项新的观赏运动——数学比赛。这听起来有些匪夷所思,但在当时确实有大批的观众从各地涌来,围观数学家们互相之间用数学斗法。其中最有名的一次,是在塔塔里亚(Tartaglia)和费奥(Fior)间上演的,是一场关于求出一元三次方程通解的世纪智力大战。
言归正传,在约翰・伯努利发出挑战后的半年里,他收到的唯一一份答案来自《教师学报》的主编,他的老师莱布尼茨(Gottfriend Wilhelm Leibniz)。在莱布尼茨的要求下,他将接受答案的最后期限推迟到 1697 年的复活节,以便有更多的数学家能参与到这场挑战中来。
我们都知道,过两点的直线段是两点间的最短路径。但使质点的运动时间最短的运动轨迹,却不是那么的显而易见。这个问题和以往人们见过的那些求极值的问题是有本质区别的。借助微积分,人们可以求出一个函数的极值;但最速降线问题要求的并不是某个传统函数的极值点,而是要在一簇曲线(过 A、B 两点的所有曲线)中,求出能让质点运动时间最短的那条。这是一个以函数(小球的运动轨迹)为自变量,以实数(小球运动的时间)为函数值的函数,也就是所谓的泛函。我们要求的就是这样一个泛函的极值。正如后文将要介绍的那样,这类问题形成了一个全新的数学分支——变分学。
1697 年的复活节很快就到了,约翰・伯努利一共收到了五份正确答案。这五份答案分别来自他自己,他的老师莱布尼茨,他的哥哥雅各布・伯努利(Jakob Bernoulli),他的学生洛必达(Guillaume Francois Antonie de L’Hospital),还有一位来自英国的匿名数学家。最后这份答案虽然没有署名,但显然出自赫赫有名的牛顿(Issac Newton)之手。虽然五人的解法各不相同,但他们的答案全都一样——最速降线就是摆线。
同一个答案
所谓摆线(cycloid),就是当圆沿一条直线运动时,圆周上一定点所形成的轨迹。其实当时的数学家对这种曲线并不陌生,帕斯卡和惠更斯都曾研究过这一重要的曲线。但大部分人都没有想到,这条线同时也是人们苦苦追寻的最速降线。
而我们大家对摆线也不陌生。还记得小时候玩过的那种能够画出各种漂亮曲线的玩具吗?一块塑料板上开着几个圆形的大洞,还有几块较小的圆形塑料片,不同半径处留有一些孔。把这些看似普通的小圆片放进大圆孔中,再将圆珠笔插在小孔里并带动小圆片沿着大圆的圆周运动,就能在纸上留下各种美丽的曲线。这些曲线也都是摆线,只不过是另一种被称为“内摆线”(hypocycloid)的摆线。它们是由给定圆在另一个圆内运动时,圆周上一定点形成的轨迹。
不同的解法
让我们回到众人给出的最速降线的解法上。莱布尼茨、牛顿、洛比达都是用他们擅长的微积分来解决这个问题的。伯努利兄弟的解法就值得特别地说一说了。
约翰的解法应该是最漂亮的解法了。他利用了费马原理(Fermat’s principle),将小球的运动类比成光线的运动。费马原理又叫做“最短光时”原理,说的是光线在传播时总会选择光程极短的那条路径。那么,“最速降线”就是在光速随高度下降而增加的介质里光线传播的路径。用这样的类比思想,约翰成功地算出了这条曲线就是前面提到的摆线。
这种解法出人意料地用到了费马原理,实在是太巧妙了!在物理学中,费马原理被认为是“最小作用量原理”(principle of least action)在几何光学中的特例。 而最小作用量原理则是物理学定律普遍遵循的规律,甚至被称为“物理定律的定律”。
不知你想过没有,当我们将一个小球抛出后,它为什么会沿着所谓的抛物线运动?你可能会说,因为小球只受重力作用,根据牛顿第一定律,它在水平方向上速度恒定不变;而根据牛顿第二定律,它在竖直方向上做匀变速运动。这两个运动合起来就使得小球的运动轨迹成了一条抛物线。
这确实不错,但现在让我们换一个角度来考虑这个问题。从整体的角度考虑,小球在被抛出后,为什么不沿着其他的路径运动,却总是沿着抛物线运动呢?同样,我们在考察了连接小球起点和终点的所有曲线后,会发现只有在沿着抛物线运动时,小球的动能和势能的差在运动过程中对时间的积分(这就是所谓的“作用量”)才是最小的。注意,在这里我们同样是在一簇曲线中,求出一条曲线使得某个量达到极值。这种在一簇曲线中,求出某条曲线使得函数取到极值的思想就是变分的核心思想。也就是说,我们又是在用变分求泛函的极值。
再回过头来看看约翰・伯努利的哥哥——雅各布・伯努利的解法。虽然雅各布的解法相对于约翰的解法来说更复杂更麻烦,但他的解法更具有一般性,体现了变分的思想。约翰的学生,伟大的数学家欧拉吸收了这一思想,并从 1726 年开始发表相关的论文,最终于 1744 年首先给出了这类问题的解法,并创立了变分学这一新的数学分支。投资者用它来计算最大利润,工程师用它来计算最小损耗,建筑师用它来优化架构。它成为了微积分理论中最强大的工具之一。
扩展阅读
- 重力下的最快下降曲線 台湾国立中央大学物理演示实验, 页面中有实验小球在各种形状的轨道下降速度的视频.
- Brachistochrone Problem Wolfram上关于最速降线是摆线的证明过程.
- Cycloids Cut-the-knot 上能画各种类型的摆线的 Java Applet.
- Brachistochrone curve WikiPedia 上关于最速降线的页面
- Cycloid WikiPedia 上关于摆线的页面
高中时候也发现过这个曲线,但证明其最速还是挺有难度…看来牛顿也不是盖的!
有传言说牛顿是在造币局工作一天后, 刷了个夜把这个题秒了
这篇文章的沙花真难抢啊…连那个曲线板都木有玩过的酱油党路过T T
很有意思的说。你开始给果壳网撰文了?
被matrix67拖上了贼船
唔 不错 找时间我也开始试试~
其实早就对这感兴趣了,以至还去他们招聘的网页看了下的。你最近忙些啥?
同问楼上,我还一直想问怎么给果壳投稿
联系你想要投稿的板块的编辑就可以了.
OK,多谢~
必须来膜拜一下ai大神了。。。
请问你这篇Blog里的动态图是直接插入的图片还是用了TeX里的画图工具啊?
貌似是mathematica
支持一个, 受教了~~
哈哈,小时候玩过那个画画的模板。
这物理题读书的时候还没学过呢
据说牛顿用的是类似于光线折射的原理啊
hi dude, it’s Basel instead of Barsel. Enjoy reading your articles.
球的轨迹是整个路径上累积拉格朗日量最小的一条: 拉格朗日量满足欧拉-拉格朗日方程的时候, 牛顿第二定律才能成立; 而满足欧拉-拉格朗日方程的解, 就是极值解.
好文章,可是blog貌似有一些没有清除float的元素。
新主题的<h1>的问题, 之前有换成<h2>, 但没换全. 多谢!
挺有意思的